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Abstract. In this study, an improved YOLOVS object detection model (YOLOVS-
C2f-CA) is proposed to automate the detection and quantification of embryonic
cells, supporting embryologists in accurately assessing embryo morphology. By
integrating a Coordinate Attention (CA) mechanism into the YOLOvVS architec-
ture, our model achieved 87.8% mean average precision (mAP), 83.9% precision,
and 76.4% recall, outperforming the baseline YOLOVS. The lightweight CA mech-
anism is incorporated into both the backbone and neck networks of YOLOVS, bol-
stering the model’s capacity to identify the key morphological features of embryos
without substantially impacting its size or computational efficiency. This method
facilitates a rapid and precise evaluation process, minimizing the need for extensive
time and human resources while maintaining precise accuracy.
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1 Introduction

In the domain of Assisted Reproductive Technologies (ART) [1], selecting the optimal
embryo for transfer is a crucial process that requires an intricate analysis of its morpho-
logical characteristics such as size, shape, and cell count during the cleavage stages. A
critical aspect of this assessment involves monitoring the change in the number of embry-
onic cells at various developmental stages, from the initial 2-cell stage to the 14-cell stage.
The number of embryonic cells at each stage is a key indicator of normal embryonic
development, which helps identify potential abnormalities and determine the optimal
transfer timing [2]. Figure 1 illustrates the developmental stages of the embryo, with
different embryonic cell counts at each stage. Traditionally, these evaluations have been
manually performed by embryologists [3]. However, this process is prone to variability
and inaccuracies due to intra- and interobserver differences.
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In recent years, the integration of Artificial Intelligence (AI) and Machine Learning
(ML) in medical imaging has shown potential in addressing the complexities of manual
analysis in human embryo images. These technologies automate various tasks such as
grade classification, viable embryo identification, and morphological features segmen-
tation [4]. Key studies include Kragh et al. [5], who applied a self-supervised method
for embryo viability prediction, and Liu et al. [6], who used a multi-task deep learning
algorithm for classifying embryonic development stages. Further contributions include
the application of Al in morphological feature analysis, including automatic blastomere
cell recognition and counting, and the segmentation of trophectoderm (TE) and inner
cell mass (ICM) regions [7-9]. Building on these advancements, object detection models
have also emerged as powerful tools for automating complex image analysis tasks in
various fields [10, 11]. These models excel in identifying detailed features in images,
making them particularly suited to embryology’s demands for precise observation of
morphological and dynamic features.

5C2 ‘6CI” “7CT1

8C2 ‘10C2’

Fig. 1. Human embryos at different development stages.

This study introduces a novel embryo evaluation approach using an improved
YOLOVS object detection model, YOLOv8-C2{-CA, designed for the automated iden-
tification and counting of embryonic cells in human embryo images. This proposed
approach has demonstrated the ability to accurately identify and count embryonic cells
at different developmental stages. A comprehensive performance evaluation across six
distinct metrics reveals that the improved model outperforms the baseline YOLOvVS8
model in terms of accuracy while maintaining minimal increases in model size and
computational demands. The effectiveness of our approach, validated against embryolo-
gists’ manual annotations, demonstrates its potential to reduce embryologists’ workload
by providing a reliable, automated tool for embryo evaluation.
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2 Related Work

2.1 YOLO-Based Object Detection

Object detection methods are broadly categorized into two-stage algorithms and one-
stage algorithms. Two-stage algorithms first generate a series of candidate bounding
boxes as samples and then classify these samples using a convolutional neural network.
In contrast, one-stage algorithms approach object detection as a regression task, directly
predicting the bounding box and classifying objects across multiple locations within the
entire image.

In2016,Redmon et al. [12] introduced YOLO (You Only Look Once) into the field of
object detection, revolutionizing the performance and efficiency of detection methods.
YOLO is a single-stage detector that employs a grid-based approach for both object
localization and classification, significantly outperforming previous detection methods.

The most recentiteration, YOLOVS8 [13], introduces several enhancements, including
an anchor-free design, a more efficient backbone network, and advanced loss functions.
These enhancements make YOLOVS a state-of-the-art solution for a wide range of object
detection tasks [14].

2.2 Attention Mechanism

Attention mechanisms, initially proposed by Bahdanau et al. in 2014 for neural machine
translation [15], have since been widely adopted across various computer vision applica-
tions [16]. These mechanisms enable models to selectively focus on relevant regions of
the input data, thereby improving feature representation and enhancing detection accu-
racy. Among these, the Squeeze and Excitation (SE) attention mechanism [17] stands out
for its ability to adaptably recalibrate feature map channels based on their relative impor-
tance. However, the SE method primarily focuses on recalibrating channel-wise features
by compressing global spatial information into channel descriptors, which makes it dif-
ficult to preserve the precise location details essential for capturing spatial structures in
visual tasks. Therefore, the Coordinate Attention (CA) mechanism [18] is proposed to
account for both inter-channel relationships and spatial information. This mechanism
incorporates adaptive average pooling, concatenation, and the computing of attention
coefficient for feature map recalibration, demonstrating its superior performance and
lightweight characteristics compared to alternative attention mechanisms [19, 20].

3 Methods and Materials

3.1 Data

In this study, we analyzed a collection of 250 human embryo images obtained from
Shanghai General Hospital in China using an Olympus microscope. These images depict
embryos cultured from 2 to 5 days after fertilization. Embryologists graded each embryo
using the ‘n-C-g’ notation based on cell quality, where ‘n’ denotes the cell count and
‘g’ indicates the grade. For instance, ‘6C3’ represents an embryo with six cells and
quality level of 3. To prepare for YOLO model training, we labeled the embryonic cells
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in the images using the Roboflow data labeling tool [21]. Each image underwent careful
labeling and verification by embryologists to ensure accuracy. Prior to augmentation, the
original dataset was partitioned into training, validation, and testing sets using an 80:15:5
ratio. Subsequently, we applied data augmentation techniques, including rotations and
adjustments in brightness, to expand our dataset to 503 images. The detailed labeling
process is shown in Fig. 2.

Annotations

Group: blastomere

CLASSES

® blastomere

Fig. 2. Labeling process of embryonic cells. A ‘6C3’ grade human embryo image with 6 labeled
blastomeres.

3.2 Improved YOLOVS: YOLOVS-C2f-CA

Building upon the YOLOVS architecture, this study introduces an improved version,
YOLOV8-C2f-CA, optimized for the detection and counting of embryonic cells in human
embryo images. As illustrated in Fig. 3, the proposed network architecture consists
of three main components: the backbone network (backbone), the bottleneck network
(neck), and the detection layer (head). The backbone network incorporates the standard
convolution module (CBS), C2f module, Coordinate Attention (CA) mechanism, and
Spatial Pyramid Pooling Module (SPPF). The bottleneck network is composed of CBS
and C2f modules along with the coordinate attention mechanism, followed by a series of
concatenation operations. The key improvement in the YOLOv8-C2f-CA model over the
original YOLOVS architecture is the strategic incorporation of the coordinate attention
mechanisms that directly follow each C2f module in both the backbone network and neck
network. The C2f module is a fundamental feature extraction unit that constitutes the
entire network. The subsequent inclusion of the CA module enhances the model’s ability
to extract complex features, enabling a more focused analysis of relevant morphological
characteristics in embryo images.

C2f Module. Figure 4 illustrates the C2f module, a critical component in the feature
extraction process of our network architecture. This module incorporates a CBS module,
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Fig. 3. The architecture of the improved YOLOVS.

which is essential for the initial phase of feature extraction. It consists of convolution,
batch normalization, and the SiLU activation function. These components are responsi-
ble for performing down-sampling, dimensionality adjustment, normalization, and intro-
ducing non-linearity into the feature maps. Subsequently, the feature maps undergo a
sequence of transformations through a series of bottlenecks, transitioning from basic
representations to complex feature maps. The C2f module adeptly combines detailed
and contextual information from various scales through strategic residual connections
between different feature levels. Initially, these maps are rich in detail but lack broader
context. As they advance, they gain contextual depth at the potential expense of finer
details. To augment the feature representation capability of the network, particularly for
the complex task of analyzing human embryo images, the coordinate attention mecha-
nism is incorporated following the C2f module. This integration focuses on enhancing
the spatial information handling within the module, enabling the network to prioritize
relevant spatial details in the overlapping structures observed in embryo images.

Coordinate Attention Mechanism. When processing images, it is crucial for the object
detection model to focus on the target regions rather than the entire image. The atten-
tion mechanism enables the model to concentrate on these target regions, enhancing the
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Fig. 4. The architecture of the C2f module: (a) C2f module; (b) Bottleneck in C2f.

detection performance. To ensure that the proposed model focuses on embryonic cell fea-
tures and minimizes the influence of irrelevant exfoliated cells and fragmentations in the
background, the coordinate attention modules are incorporated into both the backbone
and neck networks of YOLOVS. By applying the CA module to features extracted from
each C2f module, more relevant embryonic information is obtained. The CA mechanism
extends traditional attention by considering both inter-channel dependencies and spatial
information. It is designed to cfficiently capture relevant features without adding signif-
icant computational overhead. The structure diagram of the CA mechanism is shown in
Fig. 5, where H and W denote the height and width of the feature map, C represents the
number of channels, and r is the reduction ratio.

For an input feature map X of dimensions C x H x W, we apply pooling kernels of size
H x 1 and 1 x W along the horizontal and vertical coordinates, respectively. This process
generates feature maps, f;, and f,,, with dimensions C x H x 1 and C x 1 x W. These
maps are concatenated and adaptively modulated via a convolutional layer that includes
batch normalization and a ReLU activation function, producing a combined feature map
of dimensions C x 1 x (W + H). Attention coefficients g" and g", sized C x H x 1
and C x 1 x W respectively, are then calculated through convolutional operations with
sigmoid activations. These coefficients recalibrate the input feature map X via element-
wise multiplication, emphasizing critical spatial locations while suppressing less relevant
ones. The output of this CA mechanism can be defined as follows:

Y(i,)j) = X(i,)) ® ") ® " () (1)

where ® denotes the element-wise product.

3.3 Performance Evaluation

To evaluate the performance of the improved YOLOv8 model, we used six essential
metrics: mean average precision (mAP), precision, recall, inference time, model size,
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Fig. 5. The architecture of the Coordinate Attention (CA) mechanism.

and giga floating point operations per second (GFLOPs). The mAP is the average pre-
cision (AP) across different classes as shown in Eq. (2), AP itself is derived from the
area under the precision-recall curves, indicated in Equation (). Precision, outlined in
Eq. (4), measures the accuracy of the model’s positive predictions, while recall, detailed
in Eq. (5), evaluates the model’s capability to identify all correct instances of embryonic
cells. In these equations, ‘P’ and ‘R’ represent precision and recall, respectively, with
‘TP’ indicating true positives, ‘FP’ denoting false positives, and ‘FN’ standing for false
negatives.

N
1
mAP = XI:AP,- )
1=
AP = > PR 3)
= ;
R;
TP
P=— — “
TP + FP
TP
R=——r Q)
TP + FN

Inference time measures the network’s speed to process an input image and generate
predictions. The complexity of the model, known as the model size, is quantified by
aggregating all trainable parameters across all layers, as expressed in Eq. (6).

N
Model size =) I; (6)
i=1
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where |; indicates the number of trainable parameters in the i layer, with N denoting the
total number of layers. Additionally, GFLOPs evaluate the computational efficiency by
quantifying the number of floating-point operations a model can perform in one second,
measured in billions (G).

3.4 Experimental Setup and Parameters Settings

The experiments were performed on Intel HD Graphics 630. The software setup included
Python 3.9.12 and PyTorch 1.13.1 versions. During the training process, specific param-
eters were adopted to ensure optimal performance. As depicted in Table 1, the size of
the input images were uniformly adjusted to 640 x 640 pixels, and we used a consistent
batch size of 16. Optimization was carried out using the Adam optimizer, which was set
with a learning rate of 0.002 and a momentum value of 0.9. The training process was
conducted for 25 iterations for all models.

Table 1. Parameters settings.

Parameter Value
Image size 640 x 640
Batch size 16
Optimizer Adam
Learning rate 0.002
Momentum 0.9
Epochs 25

4 Results and Discussion

4.1 Detection Results

To illustrate the improvements made to the YOLOVS network, this paper compares
and analyzes the embryonic cell detection results of YOLOv8-C2f-CA and the origi-
nal YOLOvVS. As observed in Fig. 6, the baseline YOLOvVS8 exhibits instances of false
negatives (FN) and false positives (FP). Notably, it fails to detect all embryonic cells
across various embryo grades. In addition, it incorrectly identifies and classifies non
blastomere-cells as blastomeres, potentially overestimating the embryonic cell count
and introducing inaccuracies in embryo analysis. However, the YOLOvS-C2f-CA model
effectively addresses these limitations, improving accuracy in accurately identifying the
correct number of embryonic cells across various stages of embryo development.

On the other hand, Table 2 provides a quantitative evaluation of the YOLOvS8-C2f-
CA model compared to the baseline YOLOVS. This comparative analysis showcases
a notable improvement in detection accuracy with YOLOvS8-C2f-CA, as demonstrated
by a 5.66% increase in mAP, along with improved precision and recall rates by 3.2%
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and 7.76%, respectively. This improvement indicates that the identification of embryonic
cells is more reliable, with reduced false positives and false negatives, while maintaining
minimal increases in model size and computational efficiency.

YOLOVS Input

YOLOVS-C2f-CA

Grade ’5C1”°

Grade ’8C1’°

Grade ’10C1”°

Fig. 6. Comparative analysis of detection results using the original YOLOv8 and the improved

YOLOvVS8-C2f-CA across different embryonic development stages.

Table 2. Performance comparison of YOLOv8 and YOLOvVS8-C2f-CA.
Method Precision | Recall | mAPO.5 | Model Size | GFLOPs | Inference Time
YOLOVS8 0.813 0.709 |0.831 6.3 MB 12.2 134.8 ms
YOLOvS8-C2f-CA | 0.839 0.764 |0.878 7.2 MB 15.7 165 ms

(ours)

4.2 Effect of CA Position on Network Performance

To evaluate the impact of integrating the coordinate attention mechanism at various
positions within the network, a detailed performance analysis is conducted, with find-
ings presented in Table 3. The baseline YOLOvV8 model includes four C2f modules
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in its backbone network and an additional four in the neck network. The designation
YOLOV8-C2f-CA (N) refers to the integration of the CA mechanism after the Nth C2f
module, with N ranging from 1 to 8, reflecting the total count of C2f modules within the
network. Meanwhile, YOLOvS8-C2f-CA (all) indicates the integration of the CA mecha-
nism following every C2f module in both the backbone network and neck network. Our
results indicate that the placement of the CA mechanism significantly affects both the
accuracy and size of the model. Optimal performance is observed with YOLOvS-C2f-
CA (all), achieving the highest accuracy without an increase in computational demands,
as indicated by lower GFLOPs and model size. Conversely, the least effective configura-
tions are YOLOvVS8-C2f-CA (4) and YOLOvS8-C2f-CA (8), which increased the model’s
computational efficiency without enhancing its accuracy.

Table 3. Performance comparison of introducing the CA module in different positions of the
network.

Method Precision | Recall | mAPO.5 | Model Size | GFLOPs | Inference Time
YOLOvVS-C2f-CA | 0.81 0.734 ]0.853 8.8 MB 194 190.3 ms
(1)

YOLOv8-C2f-CA |0.811 0.701 |0.833 8.8 MB 19.6 190.8 ms
2)

YOLOvS8-C2f-CA |0.821 0,716 |0.845 8.8 MB 19.8 191 ms
(3)

YOLOv8-C2f-CA |0.787 0.705 |0.858 11.8 MB 21.2 202.2 ms
“4)

YOLOv8-C2f-CA |0.814 0.729 |0.851 10.6 MB 19.2 191.2 ms
(5)

YOLOvVS-C2f-CA |0.828 0.732 ]0.863 8.9 MB 17.9 178.8 ms
(6)

YOLOv8-C2f-CA |0.824 0.741 |0.867 10.6 MB 20.7 196.4 ms
N

YOLOvVS-C2f-CA |0.818 0.706 |0.856 11.9 MB 21.2 202.7 ms
3)

YOLOv8-C2f-CA |0.839 0.764 |0.878 7.2 MB 15.7 165 ms
(all)(ours)

5 Conclusion

In this paper, we propose an improved YOLOvV8 object detection model to automate
the detection and quantification process of embryonic cells in human embryo images.
This novel approach supports embryologists in accurate embryo morphology evalua-
tion in assisted reproductive technologies (ART). By integrating a coordinate attention
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mechanism into the baseline YOLOvVS, the accuracy of embryonic cell detection is
improved, and the precise quantification of the cells across different developmental
stages is achieved, providing an efficient alternative to the traditional manual techniques
that are prone to subjectivity and variability.

The comprehensive evaluation, employing six performance metrics, reveal that the
improved YOLOVS-C2f-CA model not only outperforms the baseline YOLOv8 model
in terms of mean average precision, precision, and recall but also maintains an optimal
model size, ensuring practical applicability in clinical settings. The validation of the
proposed approach against the evaluations of experienced embryologists underscores its
reliability and potential to greatly reduce the workload involved in embryo morphology
assessment. Due to dataset limitations, we did not conduct experiments on additional
datasets. Future work will focus on enhancing the model’s robustness and generalization
by incorporating larger and more diverse datasets of embryo images, including those
from varied sources to introduce depth information.
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