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Problems with existing Myo-prosthetics 

Training time for users to gain accurate control of Electro-Myography 

(EMG) prosthetics is lengthy, taking several months on average

Prosthetics with automatic control methods negatively trade-off on 

❑ Weight 

❑ Cost 

❑ Appearance 

❑ Size
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Knowledge gap

This research addresses the knowledge gap surrounding the absence 

of prosthetic arms capable of automated object gripping and hand 

gesture performance, without imposing the negative impacts of 

extensive user training and excessive weight in the prosthetics. 

It specifically focuses on tackling this gap from a software 

perspective.
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Overall Objective

The overall objective of this thesis is to explore the application of 

computer vision and machine learning technologies in prosthetic 

hands to automate the process of performing hand gestures and grip 

control of the prosthetic hand.
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Specific objectives

❑ Train tree-based classification models in accurately interpreting EMG signals

❑ Train an agent using existing SAC, PPO and DQN algorithms to enable the 

prosthetic hand's end effector to automatically grasp objects and to examine 

how each of the mentioned models affects the hand’s ability to effectively 

grasp objects.

❑ Test the optimal model on varying objects to examine how object’s physical 

properties affect prosthetic’s hand ability to effectively grasp objects.
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Experiment 1: EMG signal data analysis for 
hand gesture estimation

The goal of this experiment is to 

develop a model that can 

interpret EMG signals in 

predicting specific hand gestures.

Procedure:

❑ EDA

❑ Data preparation

❑ Model training 6



Data explanation
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Source: Jiang, et al., 2022



Data preparation
Standard Scaling

❑ Improves algorithm performance and data interpretability

❑ Scale the mean to 0 and standard deviation to 1

Univariate Feature Selection

❑ Calculates F-value for features, converts to p-value

Hyperparameter Tuning

❑ Grid search cross-validation used to find optimal hyperparameters
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Model training – Decision Tree and Random Forest
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Experiment 2: Automated grip control
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This experiment is setup 
to train the simulated 
prosthetic arm gripper to 
be able to grip an object 
in minimum time and 
with optimal force.

The training environment 
scene consists of a 
gripper, plane, and 
random objects 
spawned on a table.



Environment Setup

❑ An RGBD camera mounted on the gripper provides RGB data, depth 

data, and segmented mask information.

❑ Gripper movements are determined by a collection of values 

representing translation, yaw rotation, and gripper open/close actions.

❑ Rewards or punishments are given in each episode based on task 

completion and time taken.

❑ A shaped reward function is used, specifically designed for the 

gripping task.
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Sensor

The sensor used in the task is a camera mounted at 
the midpoint of the gripper's base.

Observations captured by the sensor represent the 
state space in the Markov decision process.

A perception pipeline is implemented using RGBD 
observations, which combine RGB color data with 
depth information.
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Sensor data processing
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❑ Gripper width information is 
padded into a three-dimensional 
array as an extra channel.

❑ During training, the extra channel 
is removed, allowing the robot to 
learn how to use the sensor data 
and gripper width.

❑ Convolutional neural networks are 
used to learn features from the 
RGBD data.

❑ Gripper width information is 
concatenated with the RGBD tensor 
to form the observation vector.



A reward function was used to encourage efficient grasping and quick 

lifting of the object while penalizing the agent for taking too long.

Where 𝑟𝑡 = terminal reward, 𝑟𝑔 = grasping reward, 𝑟𝑡𝑝 = time and distance 

penalty

Reward Function
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Non-terminal state Terminal state

Object grasped? 𝑟𝑔 − 𝑟𝑡d𝑝 𝑟𝑡 − 𝑟𝑡d𝑝

Not grasped? −𝑟𝑡d𝑝 @timeout −𝑟𝑡d𝑝



Training Process
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❑  Training starts from a reset state with objects on the table and the 

gripper mid-air.

❑ Reward functions are defined to provide feedback based on the agent's 

actions.

❑ Episodes consist of the agent taking actions, receiving rewards, and 

aiming to maximize cumulative reward.

❑ The agent updates its policy based on observed rewards and the 

current state, exploring the environment to learn the optimal policy.



Experiment 1 – Results and Discussion
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Model Evaluation Report:

❑  The decision tree classifier 

reports a higher precision and recall 

for most classes, resulting in an 

overall accuracy of 94% compared 

to the 88% accuracy of the random 

forest classifier.

❑ The similarity in macro average 

and weighted macro average 

suggests that the models perform 

similarly across all the different 

EMG channels.

Decision Tree Random Forest

Channels precision    recall  precision    recall  

1 0.94      0.95      0.84    0.89      

2 0.93      0.94      0.93      0.94      

3 0.92      0.93      0.92      0.93      

4 0.98      0.98      0.98      0.98      

5 0.93      0.93      0.93      0.93      

6 0.91      0.91      0.91      0.91      

7 0.94      0.94      0.94      0.94      

8 0.92      0.92      0.92      0.92      

9 0.94      0.94      0.94      0.94      

10 0.94      0.93      0.94      0.93      

Accuracy 0.94 0.88

Macro avg 0.94     0.94     0.94     0.94     

Weighted 

avg

0.94     0.94     0.94     0.94     



Experiment 1 – Results and Discussion
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EMG signal channels importance:

❑ For both models, the EMG signal from channel 2 was identified as the most important 
feature.

❑The importance of the timestamp was relatively high in both models, indicating that 
constant use of the device can significantly affect the model’s performance, even more so 
than the EMG signal channels themselves.



Experiment 2 – Results 
and Discussion
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Algorithm-specific success rate:



Experiment 2 – Results and Discussion
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ANOVA test to examine the significant differences between the three 

algorithms:

Summary Result

DF 2

Pillai's trace statistic 0.57982

Approximate F-statistic 10148.93

P-value 2.2e-16 ***

Significance code: 0 ‘***’

At p-value (2.2e-16) < 0.05, reject the 

null hypothesis.

There is a significant difference in the 

performance of the three algorithms.



Experiment 2 – Results 
and Discussion
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Object-specific success rate:



Experiment 2 – Results and Discussion
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ANOVA test to examine the significant differences between the three 

objects using the SAC policy:

Summary Result

DF 2

Pillai's trace statistic 0.6888

Approximate F-statistic 552.9

P-value 2.2e-16 ***

Significance code: 0 ‘***’

There is a significant difference in the 

performance of the SAC algorithm on 

the three different objects .



Conclusion
❑ In Myo prosthetics with intelligent gesturing capabilities, frequency of use has an 

impact on the model’s performance in accurately interpreting the signals.

❑ In EMG devices, the different signal channels do not have the same importance in 

the overall signal interpretation. Specifically, for an 8-channel EMG device, the 

channel 2 is the most significant.

❑ SAC algorithm excels the most in comparison with DQN and PPO when training a 

prosthetic hand to automatically grasp objects with appropriate force and at the 

correct contact point. 

❑ Object physical properties such as the shape and texture is a major determinant of 

how effectively the prosthetic hand can grip objects without it slipping or getting 

damaged. 22



Contribution
❑ For an 8-Channel EMG device, the identification of the second channel as a key driver in 

gesture recognition offers practical implications for designing and implementing robust and 

efficient gesture recognition systems, as it provides guidance for feature selection and 

prioritization in real-world applications.

❑ The research reveals that the success of prosthetic grasping is influenced by object physical 

properties, such as shape and texture. Understanding these factors can inform the 

development of robust prosthetic grasping systems capable of effectively gripping objects 

without slippage or damage.

❑ By scaling the learning rate for each parameter, the performance of the model used in sensor 

data preprocessing is significantly improved, particularly for sparse data. This enhancement 

builds upon prior work by Breyer, et al., (2019) and optimizes data handling in EMG-based 

applications.
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Thank you
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